Python机器学习——原理、算法及案例实战-微课视频版
国家级教学示范中心联席会计算机学科组“十四五”规划教材,更新22.12.24,提供思政版教案和大纲,PPT课件,教学设计、源码,实验,视频,答案,咨询QQ:2301891038(仅限教师)。

作者:刘艳、韩龙哲、李沫沫

丛书名:大数据与人工智能技术丛书

定价:59.8元

印次:1-12

ISBN:9787302590026

出版日期:2021.11.01

印刷日期:2025.07.21

图书责编:王冰飞

图书分类:教材

电子书
在线购买
分享
内容简介
作者简介
前言序言
资源下载
查看详情 查看详情 查看详情

本书系统介绍了经典的机器学习算法,并通过实践案例对算法进行解析。 本书内容包含三部分: 第一部分(第1章和第2章)为入门篇,着重介绍Python开发基础及数据分析与处理;第二部分(第3章和第4章)为基础篇,着重介绍机器学习的理论框架和常用机器学习模型;第三部分(第5~11章)为实战篇,介绍经典机器学习算法及应用,包括KNN分类算法、KMeans聚类算法、推荐算法、回归算法、支持向量机算法、神经网络算法以及深度学习理论及项目实例。 本书力求叙述简练,概念清晰,通俗易懂。书中的案例选取了接近实际应用的典型问题,以应用能力、创新能力的培养为核心目标。 本书可作为高等院校计算机、软件工程、大数据、通信、电子等相关专业的教材,也可作为成人教育及自学考试用书,还可作为机器学习相关领域开发人员、工程技术人员和研究人员的参考用书。

前言 机器学习是计算机研究领域的一个重要分支,已经成为人工智能的核心基础。一方面,机器学习是人工智能理论和应用研究的桥梁;另一方面,模式识别与数据挖掘的核心算法大都与机器学习有关。机器学习在计算机发展过程中日益完善,目前是人工智能领域最具活力的研究方向之一。 机器学习作为人工智能理论研究的一部分,以数学理论知识为基础,以解决实际问题为实践场景,与社会生产息息相关。在众多领域,机器学习正展现其巨大的潜力,扮演着日益重要的角色。 本书系统介绍了经典的机器学习算法。在编写过程中,尽量减少数学理论知识,将数学公式转换成原理示意图、步骤解析图、流程图、数据图表和源程序等表达方式,帮助读者理解算法原理。本书注重理论联系实际,将算法应用于实际案例场景,培养理论研究能力和分析、解决问题能力。 本书选取典型的问题作为实践案例,借助案例对算法进行系统解析。在解决实际任务的过程中,读者能够掌握机器学习算法并灵活运用。本书带领读者循序渐进,从Python数据分析与挖掘入门,在实践中掌握机器学习基本知识,最终将机器学习算法运用于预测、判断、识别、分类、策略制定等人工智能领域。 本书内容包含三部分: 第一部分(第1章和第2章)为入门篇,着重介绍Python开发基础及数据分析与处理;第二部分(第3章和第4章)为基础篇,着重介绍机器学习的理论框架和常用机器学习模型;第三部分(第5~11章)为实战篇,介绍经典机器学习算法及应用,包括KNN分类算法、KMeans聚类算法、推荐算法、回归算法、支持向量机算法、神经网络算法以及深度学习理论及项目实例。 本书提供丰富的配套资源,包括教学大纲、教学课...

目录
荐语
查看详情 查看详情
目录

第一部分入门篇

第1章机器学习概述3

1.1人工智能简介4

1.1.1什么是人工智能4

1.1.2人工智能史上的三次浪潮4

1.1.3人工智能的研究领域8

1.2机器学习的主要工作17

1.3机器学习开发环境19

习题25

第2章Python数据处理基础27

2.1Python程序开发技术27

2.2基本数据类型29

2.3数据文件读写37

2.3.1打开与关闭文件37

2.3.2读取文件内容38

2.3.3将数据写入文件39

2.3.4Pandas存取文件40

2.3.5NumPy存取文件42

习题43

第二部分基础篇

第3章Python常用机器学习库47

3.1NumPy47

3.1.1ndarray对象48

3.1.2NumPy数据类型49

3.1.3NumPy数组属性53

3.1.4其他创建数组的方式55

3.1.5切片、迭代和索引59

3.1.6NumPy计算62

3.2Pandas64

3.2.1Series数据结构64

3.2.2DataFrame对象67

3.2.3数据对齐75

3.3Matplotlib78

3.4OpenCV91

3.5Scikit learn96

3.5.1SKlearn简介96

3.5.2SKlearn的一般步骤97

3.6其他常用模块99

3.6.1WordCloud制作词云99

3.6.2Jieba中文分词101

3.6.3PIL105

习题112

第4章机器学习基础114

4.1机器学习模型115

4.1.1线性模型与非线性模... 查看详情

本书使用Python作为开发环境,介绍最为经典的机器学习算法,例如监督学习中的回归算法、人工神经网络算法;非监督学习中的Apriori算法、K—均值算法、聚类算法 查看详情